REVIEW
Introdução: A Monitorização Neurofisiológica Intraoperatória (MNIO) na cirurgia de hérnia de disco cervical é controversa. Enquanto alguns a consideram essencial para a segurança, outros questionam seu custo-efetividade, especialmente em casos de baixo risco. Esta revisão sistemática avalia as evidências sobre a eficácia, indicações e custo-benefício da MNIO na microdiscectomia cervical. Objetivo: Avaliar criticamente as evidências atuais sobre a eficácia, indicações e relação custo-benefício da MNIO durante a microdiscectomia cervical. Métodos: Revisão sistemática nas bases de dados PubMed/MEDLINE, SciELO, LILACS, WoS e BVS de janeiro de 2015 a agosto de 2025. Foram incluídos ensaios clínicos, estudos de coorte e análises de bancos de dados que compararam desfechos de pacientes submetidos à cirurgia com e sem MNIO. Resultados: A MNIO multimodal demonstrou alta sensibilidade (85-100%) e especificidade (95-100%) para detectar alterações neurológicas, sendo mais útil em casos de alto risco (mielopatia, múltiplos níveis, revisão). Grandes estudos não mostraram diferença significativa em complicações neurológicas para cirurgias de baixo risco. Conclusão: A MNIO é uma ferramenta eficaz para aumentar a segurança na cirurgia de hérnia de disco cervical, com forte recomendação em pacientes de alto risco. Em casos de baixo risco, a decisão deve ser individualizada, considerando o perfil do paciente, a experiência da equipe e os custos.
Introduction: Intraoperative Neurophysiological Monitoring (IONM) in cervical disc herniation surgery is controversial. While some consider it essential for safety, others question its cost-effectiveness, especially in low-risk cases. This systematic review evaluates the evidence on the efficacy, indications, and cost-benefit of IONM in cervical microdiscectomy. Objective: To critically evaluate current evidence regarding the efficacy, indications, and cost-effectiveness of IONM during cervical microdiscectomy. Methods: A systematic review was conducted using PubMed/MEDLINE, SciELO, LILACS, Web of Science, and VHL databases, for studies from January 2015 to August 2025. Clinical trials, cohort studies, and database analyses comparing outcomes of patients with and without IONM were included. Results: Multimodal IONM showed high sensitivity (85-100%) and specificity (95-100%) in detecting neurological changes, being more useful in high-risk cases (myelopathy, multi-level, revision). Large database studies showed no significant difference in neurological complications for low-risk surgeries. Conclusion: IONM is an effective tool for enhancing safety in cervical disc herniation surgery, with a strong recommendation for high-risk patients. In low-risk cases, the decision should be individualized, considering the patient’s profile, the surgical team’s experience, and costs.
1. Radhakrishnan K, Litchy WJ, O’Fallon WM, Kurland LT. Epidemiology of cervical radiculopathy. A population-based study from Rochester, Minnesota, 1976 through 1990. Brain. 1994;117 (Pt 2):325-35. https://doi.org/10.1093/brain/117.2.325. PMid:8186959.
2. Carragee EJ, Hurwitz EL, Cheng I, et al. Treatment of neck pain: injections and surgical interventions: results of the Bone and Joint Initiative Task Force on Neck Pain and Its Associated Disorders. Spine. 2008;33(4, Suppl):S153-69. https://doi.org/10.1097/ BRS.0b013e31816445ea. PMid:18204388.
3. Bono CM, Ghiselli G, Gilbert TJ, et al. An evidence-based clinical guideline for the diagnosis and treatment of cervical radiculopathy from degenerative disorders. Spine J. 2011;11(1):64-72.
https://doi.org/10.1016/j.spinee.2010.10.023. PMid:21168100.
4. Fraser JF, Härtl R. Anterior approaches to fusion of the cervical spine: a metaanalysis of fusion rates. J Neurosurg Spine. 2007;6(4):298-303. https://doi.org/10.3171/spi.2007.6.4.2. PMid:17436916.
5. Smith GW, Robinson RA. The treatment of certain cervicalspine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am. 1958;40-A(3):607-24. https://doi.org/10.2106/00004623-195840030-00009. PMid:13539086.
6. Bohlman HH, Emery SE, Goodfellow DB, Jones PK. Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J Bone
Joint Surg Am. 1993;75(9):1298-307. https://doi.org/10.2106/00004623199309000-00005. PMid:8408151.
7. Fountas KN, Kapsalaki EZ, Nikolakakos LG, et al. Anterior cervical discectomy and fusion associated complications. Spine. 2007;32(21):2310-7. https://doi.org/10.1097/BRS.0b013e318154c57e. PMid:17906571.
8. Bazaz R, Lee MJ, Yoo JU. Incidence of dysphagia after anterior cervical spine surgery: a prospective study. Spine. 2002;27(22):2453-8. https://doi.org/10.1097/00007632-200211150-00007. PMid:12435974.
9. Riley LH 3rd, Skolasky RL, Albert TJ, Vaccaro AR, Heller JG. Dysphagia after anterior cervical decompression and fusion: prevalence and risk factors from a longitudinal cohort study. Spine. 2005;30(22):2564-9. https://doi.org/10.1097/01.brs.0000186317.86379.02. PMid:16284596.
10. Nuwer MR, Emerson RG, Galloway G, et al. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials. J Clin Neurophysiol. 2012;29(1):101-8. https://doi.org/10.1097/WNP.0b013e31824a397e. PMid:22353994.
11. Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119(2):248-64. https://doi.org/10.1016/j.clinph.2007.09.135. PMid:18053764.
12. Macdonald DB, Skinner S, Shils J, Yingling C, AMERICAN SOCIETY OF NEUROPHYSIOLOGICAL MONITORING. Intraoperative motor evoked potential monitoring - a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124(12):2291-316. https://doi.org/10.1016/j.clinph.2013.07.025. PMid:24055297.
13. Wilson JR, Tetreault LA, Kim J, et al. State of the art in degenerative cervical myelopathy: an update on current clinical evidence. Neurosurgery. 2017;80(3S):S33-45. https://doi.org/10.1093/neuros/ nyw083. PMid:28350949.
14. Kelleher MO, Tan G, Sarjeant R, Fehlings MG. Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine. 2008;8(3):215-21. https://doi.org/10.3171/SPI/2008/8/3/215. PMid:18312072.
15. Wilson JP Jr, Vallejo JB, Kumbhare D, Guthikonda B, Hoang S. The use of intraoperative neuromonitoring for cervical spine surgery: indications, challenges, and advances. J Clin Med. 2023;12(14):4652. https://doi.org/10.3390/jcm12144652. PMid:37510767.
16. Fehlings MG, Brodke DS, Norvell DC, Dettori JR. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine. 2010;35(9, Suppl):S37-46. https:// doi.org/10.1097/BRS.0b013e3181d8338e. PMid:20407350.
17. Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27(4):E6. https:// doi.org/10.3171/2009.8.FOCUS09150. PMid:19795955.
18. Badhiwala JH, Nassiri F, Witiw CD, et al. Investigating the utility of intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion: analysis of over 140,000 cases from the National (Nationwide) Inpatient Sample data set. J Neurosurg Spine. 2019;31(1):7686. https://doi.org/10.3171/2019.1.SPINE181110. PMid:30925481.
19. Ament JD, Leon A, Kim KD, Johnson JP, Vokshoor A. Intraoperative neuromonitoring in spine surgery: large database analysis of cost-effectiveness. N Am Spine Soc J. 2023;13:100182. https:// doi.org/10.1016/j.xnsj.2023.100206. PMid:37008516.
20. Thirumala PD, Huang J, Thiagarajan K, et al. Diagnostic accuracy of combined multimodal somatosensory evoked potential and transcranial motor evoked potential intraoperative monitoring in patients with spinal tumors. Spine. 2016;41(19):E1177-84. https://doi.org/10.1097/ BRS.0000000000001678. PMid:27172278.
21. Krause KL, Cheaney B 2nd, Obayashi JT, Kawamoto A, Than KD. Intraoperative neuromonitoring for one-level lumbar discectomies is low yield and cost-ineffective. J Clin Neurosci. 2020;72:321-5. https:// doi.org/10.1016/j.jocn.2019.08.116. PMid:31495654.
22. Porter ME. What is value in health care? N Engl J Med. 2010;363(26): 2477-81. https://doi.org/10.1056/NEJMp1011024. PMid:21142528.
23. Studdert DM, Mello MM, Sage WM, et al. Defensive medicine among high-risk specialist physicians in a volatile malpractice environment. JAMA. 2005;293(21):2609-17. https://doi.org/10.1001/jama.293.21.2609. PMid:15928282.
24. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA GROUP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https:// doi.org/10.1371/journal.pmed.1000097. PMid:19621072.
25. Rothwell PM. External validity of randomised controlled trials: “to whom do the results of this trial apply?”. Lancet. 2005;365(9453):82-93. https://doi.org/10.1016/S0140-6736(04)17670-8. PMid:15639683.
26. Glasziou P, Chalmers I, Rawlins M, McCulloch P. When are randomised trials unnecessary? Picking signal from noise. BMJ. 2007;334(7589): 349-51. https://doi.org/10.1136/bmj.39070.527986.68. PMid:17303884.
27. Altman DG, Bland JM. Diagnostic tests 2: predictive values. BMJ. 1994;309(6947):102. https://doi.org/10.1136/bmj.309.6947.102. PMid:8038641.
28. Sackett DL, Haynes RB. The architecture of diagnostic research. BMJ. 2002;324(7336):539-41. https://doi.org/10.1136/bmj.324.7336.539. PMid:11872558.
29. Neumann PJ, Cohen JT, Weinstein MC. Updating cost-effectiveness– the curious resilience of the $50,000-per-QALY threshold. N Engl J Med. 2014;371(9):796-7. https://doi.org/10.1056/NEJMp1405158. PMid:25162885.
30. Laupacis A, Sackett DL, Roberts RS. An assessment of clinically useful measures of the consequences of treatment. N Engl J Med. 1988;318(26):1728-33. https://doi.org/10.1056/NEJM198806303182605. PMid:3374545.
31. Sala F, Palandri G, Basso E, et al. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58(6):1129-43, discussion 1129-
43. https://doi.org/10.1227/01.NEU.0000215948.97195.58. PMid:16723892.
32. Deletis V. Intraoperative neurophysiology and methodologies used to monitor the functional integrity of the motor system. In: Deletis V, Shils JL, editors. Neurophysiology in neurosurgery. Cambridge: Academic Press; 2002. p. 25-51. https://doi.org/10.1016/B978-012209036-3/50004-4.
33. Langeloo DD, Lelivelt A, Louis Journée H, Slappendel R, de Kleuver M. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine. 2003;28(10):1043-50. https://doi.org/10.1097/01.BRS.0000061995.75709.78. PMid:12768147.
34. Sutter M, Deletis V, Dvorak J, et al. Current opinions and recommendations on multimodal intraoperative monitoring during spine surgeries. Eur Spine J. 2007;16(Suppl 2):S232-7. https://doi.org/10.1007/ s00586-007-0421-z. PMid:17701231.
35. Anderson GF, Reinhardt UE, Hussey PS, Petrosyan V. It’s the prices, stupid: why the United States is so different from other countries. Health Aff (Millwood). 2003;22(3):89-105. https://doi.org/10.1377/ hlthaff.22.3.89. PMid:12757275.
36. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes. 4th ed. Oxford: Oxford University Press; 2015.
37. Woods B, Revill P, Sculpher M, Claxton K. Country-level costeffectiveness thresholds: initial estimates and the need for further research. Value Health. 2016;19(8):929-35. https://doi.org/10.1016/j.jval.2016.02.017. PMid:27987642.
38. Studdert DM, Mello MM, Brennan TA. Medical malpractice. N Engl J Med. 2004;350(3):283-92. https://doi.org/10.1056/NEJMhpr035470. PMid:14724310.
39. Asher MA, Lai SM, Burton DC. The influence of spine surgery on the practice of defensive medicine. Spine. 2007;32(21):2290-5.
40. Mello MM, Chandra A, Gawande AA, Studdert DM. National costs of the medical liability system. Health Aff (Millwood). 2010;29(9): 1569-77. https://doi.org/10.1377/hlthaff.2009.0807. PMid:20820010.
41. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Filadélfia: Lippincott Williams & Wilkins; 2008.
42. Grimes DA, Schulz KF. Bias and causal associations in observational research. Lancet. 2002;359(9302):248-52. https://doi.org/10.1016/ S0140-6736(02)07451-2. PMid:11812579.
43. Freedman B. Equipoise and the ethics of clinical research. N Engl J Med. 1987;317(3):141-5. https://doi.org/10.1056/NEJM198707163170304. PMid:3600702.
44. Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis and prognostic research: what, why, and how? BMJ. 2009;338:b375. https://doi.org/10.1136/bmj.b375. PMid:19237405.
45. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347-58. https://doi.org/10.1056/NEJMra1814259.
PMid:30943338.
46. ACCREDITATION COUNCIL FOR GRADUATE MEDICAL EDUCATION. ACGME Program Requirements for Graduate
Medical Education in Neurological Surgery. Available from: https:// www.acgme.org/Portals/0/PFAssets/ProgramRequirements/160_ NeurologicalSurgery_2020.pdf. Accessed: 12/10/2025.
47. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005;330(7494):765. https://doi.org/10.1136/bmj.38398.500764.8F. PMid:15767266.
48. Jamison DT, Breman JG, Measham AR, et al., editors. Disease control priorities in developing countries. 2nd ed. Washington: World Bank; 2006. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11728/. Accessed: 12/10/2025.
49. Prinja S, Gupta N, Verma R. Censoring in clinical trials: review of survival analysis techniques. Indian J Community Med. 2010;35(2):21721. https://doi.org/10.4103/0970-0218.66859. PMid:20922095.
1Department of Neurology and Neurosurgery, Hospital São Lucas, Campo Largo, PR, Brazil.
2Hospital São Lucas, Campo Largo, PR, Brazil.
Received Oct 12, 2025
Accepted Nov 2, 2025