ORIGINAL
Objetivo: Desenvolver um estudo morfométrico da corticotomia realizada na amigdalohipocampectomia seletiva dos acessos transsilviano, trans-giro temporal médio (trans-GTM) e subtemporal até o centro do corpo amigdaloide. Métodos: Quarenta cortes coronais de cérebros humanos, cedidos pelo Departamento de Anatomia da Universidade Federal do Paraná foram processados por meio da técnica histoquímica de Mulligan modificada por Barnard, Robert e Brown para posterior mensuração dos acessos por dois métodos diferentes: mensuração manual e digital. A análise estatística dos resultados foi feita por meio do teste t de Student. Resultados: As medidas obtidas dos acessos cirúrgicos foram tabuladas de modo a respeitar o lado do hemisfério cerebral de origem, e os dois métodos de mensuração. Os dados foram expressos em milímetros seguidos do valor calculado da média e desvio-padrão. Conclusão: Os resultados permitiram concluir que as médias obtidas por meio do paquímetro digital, seguidos do desvio-padrão para a abordagem em questão, foram de 17,39±1,72 para a abordagem transsilviana; 34,43±2,77 para a trans-GTM; e de 24,56±2,62 para a subtemporal. As distâncias médias avaliadas por meio do software ImageJ® foram de 17,50±1,70 para a abordagem transsilviana; 34,30±2,94 para a trans-GTM; e de 24,45±2,99 para a subtemporal.
Objective: To develop a morphometric study of transsylvian, trans-middle temporal gyrus (trans-MTG) and subtemporal approaches used in selective amygdalohippocampectomy surgery from the brain cortex to the amygdala’s center. Methods: Forty slices were processed by Mulligan’s histochemistry technique modified by Barnard, Robert and Brown for subsequent measurement by two different methods: manual and digital measurement. The statistical analysis was performed using Student t test. Results: The measurements obtained from surgical approaches, commonly used, were tabulated in order to respect the side of the cerebral hemisphere of origin, and the two measurement methods. Data were expressed in millimeters (mm) followed by the average value and standard deviation. Conclusion: The results showed that the average obtained through the digital caliper, followed by the standard deviation for the approach in question were 17.39±1.72 mm for the transsylvian approach; 34.43±2.77 mm for the trans-MTG; and 24.56±2.62 mm for subtemporal. The average distances evaluated using the ImageJ® software were 17.50±1.70 mm for the transsylvian approach; 34.30±2.94 mm for the trans-MTG; and 24.45±2.99 mm for subtemporal.
1. Adada B. Selective amygdalohippocampectomy via the transsylvian approach. Neurosurg Focus. 2008;25(3):E5.
2. Bandt SK, Werner N, Dines J, Rashid S, Eisenman LN, Hogan RE, et al. Trans-middle temporal gyrus selective amygdalohippocampectomy for medically intractable mesial temporal lobe epilepsy in adults: seizure response rates, complications, and neuropsychological outcomes. Epilepsy Behav. 2013;28(1):17-21.
3. Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolome F, Bernasconi A, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54(7):1315-1329.
4. Cendes F. Febrile seizures and mesial temporal sclerosis. Curr Opin Neurol. 2004;17(2):161–164.
5. Fox CH, Johnson F, Whiting J, Roller P. Formaldehyde fixation. J Histochem Cytochem. 1985;33(8):845-853.
6. French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol. 1993;34:774–780.
7. Hori T, Tabuchi S, Kurosaki M, Kondo S, Takenobu A, Watanabe T. Subtemporal amygdalohippocampectomy for treating medically intractable temporal lobe epilepsy. Neurosurgery. 1993;33(1):50–57.
8. Hudson LP, Munoz DG, Miller L, McLachlan RS, Girvin JP, Blume WT. Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol. 1993;33(6):622-631.
9. Josephson CB, Dykeman J, Fiest KM, Liu X, Sadler RM, Jette N, et al. Systematic review and meta-analysis of standard vs selective temporal lobe epilepsy surgery. Neurology. 2013;80(18):1669–1676.
10. Kerr MP, Mensah S, Besag F, de Toffol B, Ettinger A, Kanemoto K, et al. International consensus clinical practice statements for the treatment of neuropsychiatric conditions associated with epilepsy. Epilepsia. 2011;52(11): 2133–2138.
11. Lee MC, Kim GM, Woo YJ, Kim MK, Kim JH, Nam SC, et al. Pathogenic significance of neuronal migration disorders in temporal lobe epilepsy. Hum Pathol. 2001;32(6):643-648.
12. Lewis DV. Losing neurons: selective vulnerability and mesial temporal sclerosis. Epilepsia. 2005;46 Suppl 7:39–44.
13. Margerison JH, Corsellis JA. Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain. 1966;89:499–530.
14. Marks DA, Kim J, Spencer DD, Spencer SS. Characteristics of intractable seizures following meningitis and encephalitis. Neurology. 1992;42(8):1513-1518.
15. Mathern GW, Pretorius JK, Kornblum HI, Mendoza D, Lozada A, Leite JP, et al. Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients. Brain. 1997;120(Pt 11):1937-1959.
16. Meneses MS, Montano Pedroso JC, Fuzza RF, Milano JB. Comparative analysis of human brain slices with three different staining techniques. Arq Neuropsiquiatr. 2004;62(2A):276-281.
17. Niemeyer P. The transventricular amygdala-hippocampectomy in the temporal lobe epilepsy. In: Baldwin M, Bailey P (Eds). The temporal lobe epilepsy. Springfield, Illinois: Charles C Thomas; 1958, p. 461–482.
18. Olivier A. Transcortical selective amygdalohippocampectomy in temporal lobe epilepsy. Can J Neurol Sci. 2000;27 Suppl 1:S68-76.
19. Pitkänen A, Tuunanen J, Kälviäinen R, Partanen K, Salmenperä T. Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res. 1998;32(1-2):233-253.
20. Sadler RM. The syndrome of mesial temporal lobe epilepsy with hippocampal sclerosis: clinical features and differential diagnosis. Adv Neurol. 2006;5:27–37.
21. Sajko T, Skoro I, Rotim K. How I do it - selective amygdalohippocampectomy via subtemporal approach. Acta Neurochir (Wien). 2013;155(12):2381-2387.
22. Spencer D, Burchiel K. Selective amygdalohippocampectomy. Epilepsy Res Treat. 2012;2012:382095.
23. Tassi L, Meroni A, Deleo F, Villani F, Mai R, Russo GL, et al. Temporal lobe epilepsy : neuropathological and clinical correlations in 243 surgically treated patients. Epileptic Disord. 2009;11(4):281-292.
24. Veronez DAL. Estudo morfológico e morfométrico do corpo amigdaloide para definição topográfica nas amigdalohipocampectomias [Tese de doutorado]. Campinas (SP): Universidade Estadual de Campinas. Faculdade de Ciências Médicas; 2006.
25. Wheatley BM. Selective amygdalohippocampectomy: the trans-middle temporal gyrus approach. Neurosurg Focus. 2008;25(3):E4.
26. Wieser HG, ILAE Commission on Neurosurgery of Epilepsy. ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia. 2004;45(6):695–714.
27. Yasargil MG, Wieser HG, Valavanis A, von Ammon K, Roth P. Surgery and results of selective amygdalahippocampectomy in one hundred patients with nonlesional limbic epilepsy. Neurosurg Clin N Am. 1993;4(2):243–261.
28. Yilmazer-Hanke DM, Wolf HK, Schramm J, Elger CE, Wiestler OD, Blümcke I. Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe epilepsy. J. Neuropathol. Exp. Neurol. 2000;59(10):907–920.
1 Acadêmico de Medicina, Universidade Federal do Paraná, Curitiba, Paraná
2 Universidade Federal do Paraná, Departamento de Anatomia, Curitiba, Paraná
3 Departamento de Neurocirurgia, Instituto de Neurologia de Curitiba, Curitiba, Paraná
Received Dec 17, 2016. Corrected Feb 26, 2016. Accepted May 26, 2016