ORIGINAL
Introdução: a craniectomia descompressiva é um procedimento neurocirúrgico vital para melhorar a pressão intracraniana (PIC) removendo parte do crânio, aumentando a complacência cerebral e potencialmente melhorando os resultados dos pacientes. Devido à controvérsia na literatura, este estudo examina o impacto de duas incisões diferentes, Becker e tipo T, na área e nos resultados da craniectomia descompressiva. Objetivo: o objetivo é avaliar o efeito das incisões de Becker e tipo T na área da craniectomia descompressiva, no prognóstico e nas complicações associadas. Métodos: um estudo de coorte retrospectivo de janeiro de 2008 a dezembro de 2013 incluiu pacientes com mais de 18 anos que necessitaram de craniectomia descompressiva devido a acidente vascular cerebral isquêmico. O desfecho primário foi a área de craniectomia para cada tipo de incisão. Os desfechos secundários incluíram avaliação funcional, mortalidade, complicações e infecções. Os dados foram analisados usando o software STATA 12.1. Resultados: trinta e dois pacientes foram incluídos, com 22 submetidos à incisão de Becker e 10 à incisão tipo T. A área média de craniectomia foi de 104,6 cm2 para Becker e 109,7 cm2 para tipo T. Não foram observadas diferenças significativas nos resultados funcionais ou nas taxas de complicações entre os dois grupos. Ambas as incisões resultaram em craniectomias maiores que 12 cm, consideradas ideais para reduzir complicações. O estudo não encontrou diferenças significativas nos resultados entre os dois tipos de incisão, consistentes com pesquisas anteriores. Conclusão: as incisões de Becker e tipo T fornecem exposição adequada para a craniectomia descompressiva unilateral, sem diferenças significativas nos resultados. Mais pesquisas com amostras maiores são necessárias para confirmar essas descobertas.
Introduction: decompressive craniectomy is a vital neurosurgical procedure to improve intracranial pressure (ICP) by removing part of the skull, increasing cerebral compliance, and potentially enhancing patient outcomes. Due to controversy in the literature, this study examines the impact of two different incisions, Becker and T-type, on the area and outcomes of decompressive craniectomy. Objective: the objective is to evaluate the effect of Becker and T-type incisions on the area of decompressive craniectomy, prognosis, and associated complications. Methods: a retrospective cohort study from January 2008 to December 2013 included patients over 18 years requiring decompressive craniectomy due to ischemic stroke. The primary outcome was the craniectomy area for each incision type. Secondary outcomes included functional assessment, mortality, complications, and infections. Data were analyzed using STATA 12.1 software. Results: thirty-two patients were included, with 22 undergoing Becker incision and 10 undergoing T-type incision. The average craniectomy area was 104.6 cm2 for Becker and 109.7 cm2 for T-type. No significant differences in functional outcomes or complication rates were observed between the two groups. Both incisions resulted in craniectomies larger than 12 cm, optimal for reducing complications. The study found no significant differences in outcomes between the two incision types, consistent with previous research. Conclusion: Becker and T-type incisions provide adequate exposure for unilateral decompressive craniectomy, with no significant differences in outcomes. Further research with larger samples is needed to confirm these findings.
1. Grände PO, Asgeirsson B, Nordström CH. Physiologic principles for volume regulation of a tissue enclosed in a rigid shell with application to the injured brain. J Trauma. 1997;42(5, Suppl):S23-31. http://doi. org/10.1097/00005373-199705001-00005. PMid:9191692.
2. Hase U, Reulen HJ, Meinig G, Schürmann K. The influence of the decompressive operation on the intracranial pressure and the pressure-volume relation in patients with severe head injuries. Acta Neurochir. 1978;45(1-2):1-13. http://doi.org/10.1007/BF01774379. PMid:742427.
3. Plesnila N. Decompression craniectomy after traumatic brain injury: recent experimental results. Prog Brain Res. 2007;161:393-400. http:// doi.org/10.1016/S0079-6123(06)61028-5. PMid:17618993.
4. Stiver SI. Complications of decompressive craniectomy for traumatic brain injury. Neurosurg Focus. 2009;26(6):E7. http://doi. org/10.3171/2009.4.FOCUS0965. PMid:19485720.
5. Csókay A, Együd L, Nagy L, Pataki G. Vascular tunnel creation to improve the efficacy of decompressive craniotomy in post-traumatic cerebral edema and ischemic stroke. Surg Neurol. 2002;57(2):126-9. http://doi.org/10.1016/S0090-3019(01)00686-3. PMid:11904208.
6. Kurzbuch AR. Does size matter? Decompressive surgery under review. Neurosurg Rev. 2015;38(4):629-40. http://doi.org/10.1007/ s10143-015-0626-2. PMid:25862666.
7. Kessler LA, Novelli PM, Reigel DH. Surgical treatment of benign intracranial hypertension--subtemporal decompression revisited. Surg Neurol. 1998;50(1):73-6. http://doi.org/10.1016/S0090-3019(97)00359- 5. PMid:9657496.
8. Aarabi B, Hesdorffer DC, Ahn ES, Aresco C, Scalea TM, Eisenberg HM. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg. 2006;104(4):469-79. http://doi.org/10.3171/jns.2006.104.4.469. PMid:16619648.
9. Jiang JY, Xu W, Li WP, et al. Efficacy of standard trauma craniectomy for refractory intracranial hypertension with severe traumatic brain injury: a multicenter, prospective, randomized controlled study. J Neurotrauma. 2005;22(6):623-8. http://doi.org/10.1089/neu.2005.22.623. PMid:15941372.
10. Guerra WK, Gaab MR, Dietz H, Mueller JU, Piek J, Fritsch MJ. Surgical decompression for traumatic brain swelling: indications and results. J Neurosurg. 1999;90(2):187-96. http://doi.org/10.3171/ jns.1999.90.2.0187. PMid:9950487.
11. Huang X, Wen L. Technical considerations in decompressive craniectomy in the treatment of traumatic brain injury. Int J Med Sci. 2010;7(6):385-90. http://doi.org/10.7150/ijms.7.385. PMid:21103073.
12. Vahedi K, Vicaut E, Mateo J, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke. 2007;38(9):2506-17. http://doi.org/10.1161/STROKEAHA.107.485235. PMid:17690311.
13. Jüttler E, Bösel J, Amiri H, et al. DESTINY II: DEcompressive Surgery for the Treatment of malignant INfarction of the middle cerebral arterY II. Int J Stroke. 2011;6(1):79-86. http://doi.org/10.1111/j.1747- 4949.2010.00544.x. PMid:21205246.
14. Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol. 2009;8(4):326-33. http://doi. org/10.1016/S1474-4422(09)70047-X. PMid:19269254.
15. Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364(16):1493-502. http://doi.org/10.1056/NEJMoa1102077. PMid:21434843.
16. Hutchinson PJ, Kolias AG, Timofeev IS, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375(12):1119-30. http://doi.org/10.1056/NEJMoa1605215. PMid:27602507.
17. Abecassis IJ, Young CC, Caldwell DJ, et al. The Kempe incision for decompressive craniectomy, craniotomy, and cranioplasty in traumatic brain injury and stroke. J Neurosurg. 2021;135(6):1807-16. http://doi. org/10.3171/2020.11.JNS203567. PMid:34020415.
18. Ordóñez-Rubiano EG, Figueredo LF, Gamboa-Oñate CA, et al. The reverse question mark and L.G. Kempe incisions for decompressive craniectomy: a case series and narrative review of the literature. Surg Neurol Int. 2022;13:295. http://doi.org/10.25259/SNI_59_2022. PMid:35855131.
19. Timofeev I, Hutchinson PJ. Outcome after surgical decompression of severe traumatic brain injury. Injury. 2006;37(12):1125-32. http:// doi.org/10.1016/j.injury.2006.07.031. PMid:17081545.
20. Whitfield PC, Patel H, Hutchinson PJ, et al. Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension. Br J Neurosurg. 2001;15(6):500-7. http://doi. org/10.1080/02688690120105110. PMid:11814002.
21. De Bonis P, Pompucci A, Mangiola A, Rigante L, Anile C. Post-traumatic hydrocephalus after decompressive craniectomy: an underestimated risk factor. J Neurotrauma. 2010;27(11):1965-70. http:// doi.org/10.1089/neu.2010.1425. PMid:20812777.
22. Ragel BT, Klimo P Jr, Martin JE, Teff RJ, Bakken HE, Armonda RA. Wartime decompressive craniectomy: technique and lessons learned. Neurosurg Focus. 2010;28(5):E2. http://doi. org/10.3171/2010.3.FOCUS1028. PMid:20568936.
23. Wagner S, Schnippering H, Aschoff A, Koziol JA, Schwab S, Steiner T. Suboptimum hemicraniectomy as a cause of additional cerebral lesions in patients with malignant infarction of the middle cerebral artery. J Neurosurg. 2001;94(5):693-6. http://doi.org/10.3171/jns.2001.94.5.0693. PMid:11354398.
24. Arac A, Blanchard V, Lee M, Steinberg GK. Assessment of outcome following decompressive craniectomy for malignant middle cerebral artery infarction in patients older than 60 years of age. Neurosurg Focus. 2009;26(6):E3. http://doi.org/10.3171/2009.3.FOCUS0958. PMid:19485716.
25. Yoo BR, Yoo CJ, Kim MJ, Kim WK, Choi DH. Analysis of the outcome and prognostic factors of decompressive craniectomy between young and elderly patients for acute middle cerebral artery infarction. J Cerebrovasc Endovasc Neurosurg. 2016;18(3):175-84. http://doi. org/10.7461/jcen.2016.18.3.175. PMid:27847759.
26. Vahedi K, Hofmeijer J, Juettler E, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6(3):215-22. http://doi.org/10.1016/S1474-4422(07)70036-4. PMid:17303527.
27. Kurland DB, Khaladj-Ghom A, Stokum JA, et al. Complications associated with decompressive craniectomy: a systematic review. Neurocrit Care. 2015;23(2):292-304. http://doi.org/10.1007/s12028- 015-0144-7. PMid:26032808.
28. Yang HS, Hyun D, Oh CH, Shim YS, Park H, Kim E. A faster and wider skin incision technique for decompressive craniectomy: n-shaped incision for decompressive craniectomy. Korean J Neurotrauma. 2016;12(2):72- 6. http://doi.org/10.13004/kjnt.2016.12.2.72. PMid:27857911.
29. Lyon KA, Patel NP, Zhang Y, Huang JH, Feng D. Novel hemicraniectomy technique for malignant middle cerebral artery infarction: technical note. Oper Neurosurg (Hagerstown). 2019;17(3):273-6. http://doi.org/10.1093/ons/opy399. PMid:30649476.
30. Veldeman M, Daleiden L, Hamou H, Höllig A, Clusmann H. An altered posterior question-mark incision is associated with a reduced infection rate of cranioplasty after decompressive hemicraniectomy. J Neurosurg. 2020;134(3):1262-70. PMid:32330877.
31. Früh A, Zdunczyk A, Wolf S, et al. Craniectomy size and decompression of the temporal base using the altered posterior question-mark incision for decompressive hemicraniectomy. Sci Rep. 2023;13(1):11419. http://doi.org/10.1038/s41598-023-37689-7. PMid:37452076.
32. Brown NJ, Gendreau J, Rahmani R, Catapano JS, Lawton MT. Scalp incision technique for decompressive hemicraniectomy: comparative systematic review and meta-analysis of the reverse question mark versus alternative retroauricular and Kempe incision techniques. Neurosurg Rev. 2024;47(1):79. http://doi.org/10.1007/s10143-024-02307-1. PMid:38353750.
1Division of Neurosurgery, Faculdade de Medicina, Centro Universitario ABC – FMABC, Santo André, SP, Brasil.
2Universidade Estadual do Amazonas – UEA, Manaus, AM, Brasil.
3Division of Neurosurgery, Faculdade de Medicina, Universidade de São Paulo – USP, São Paulo, SP, Brasil.
Received July 16, 2024
Accepted Aug 2, 2024